Database Reverse Engineering based on Association Rule Mining
نویسندگان
چکیده
Corresponding author Abstract Maintaining a legacy database is a difficult task especially when system documentation is poor written or even missing. Database reverse engineering is an attempt to recover high-level conceptual design from the existing database instances. In this paper, we propose a technique to discover conceptual schema using the association mining technique. The discovered schema corresponds to the normalization at the third normal form, which is a common practice in many business organizations. Our algorithm also includes the rule filtering heuristic to solve the problem of exponential growth of discovered rules inherited with the association mining technique.
منابع مشابه
Data sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملARAA: A Fast Advanced Reverse Apriori Algorithm for Mining Association Rules in Web Data
This paper proposed an effective algorithm for mining frequent sequence patterns from the web data by applying association rules based on Apriori, known as Advanced Reverse Apriori Algorithm (ARAA). It also shows the limitation of existing Apriori and Reverse Apriori Algorithm. Our approach is based on the reverse scans. An experimental work is performed that shows that proposed algorithm works...
متن کاملIntroducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملGenetic program based data mining to reverse engineer digital logic
A data mining based procedure for automated reverse engineering and defect discovery has been developed. The data mining algorithm for reverse engineering uses a genetic program (GP) as a data mining function. A genetic program is an algorithm based on the theory of evolution that automatically evolves populations of computer programs or mathematical expressions, eventually selecting one that i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1004.3272 شماره
صفحات -
تاریخ انتشار 2010